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Abstract. New similarity reductions and exact solutions of the steady-state boundary layer
equations, which are of considerable importance in physics, are presented. Besides similarity
reductions obtained by applying the ‘non-classical’ group method due to Bluman and Cole, some
similarity solutions, which figure neither among classical nor among non-classical reductions,
are determined using an extension of the non-classical method.

1. Introduction

The classical method for finding similarity reductions of partial differential equations (PDE)
is the Lie-group method of infinitesimal transformations (see, for example, Bluman and Cole
(1974) and Olver (1986)). To apply the method to thenth-order equation for a function
u(x, t) of two variables of the form

1(x, t, u, ux, ut , uxx, uxt , utt , . . .) = 0 (1.1)

where the subscripts onu denote partial derivatives, we consider the one-parameter (ε) Lie
group of infinitesimal transformations in (x, t, u) given by

x? = x + εξ(x, t, u) + O(ε2) (1.2a)

t? = t + ετ(x, t, u) + O(ε2) (1.2b)

u? = u + εη(x, t, u) + O(ε2) (1.2c)

which leaves (1.1) invariant.
The vector fields of the group generators (ξ(x, t, u), τ(x, t, u), η(x, t, u)) are determined

from the invariance requirement

pr(n)1|1=0 = 0 (1.3)

wherepr(n) indicates thenth prolongation of the transformations group. Having defined
the generators of a symmetry group from the invariant surface condition

1(1) = ξ(x, t, u)ux + τ(x, t, u)ut − η(x, t, u) = 0 (1.4)

the similarity reductions may be obtained after determination of the group invariants using
the general integral of the characteristic system. The original equation (1.1) is rewritten
in terms of group invariants (treating one of them,w(x, t, u), as a function of the other
invariantz(x, t, u)) and thus is reduced to an ordinary differential equation (ODE) forw(z).
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Bluman and Cole (1969) proposed a generalization of Lie’s method for finding group-
invariant solutions which they named the ‘non-classical’ method. In this approach the
condition for the invariance of the PDE is replaced by weaker conditions for the invariance of
the combined system of differential equations consisting of the original differential equation
along with equation (1.4). In other words we require that the appropriate prolongation of
the vector field should annihilate both equations on the solution surface of both equations:

pr(n)1|1=0,1(1)=0 = 0 (1.5)

pr(1)1(1)|1=0,1(1)=0 = 0. (1.6)

This situation is subsumed under the general concept of a differential equation with side
conditions proposed by Olver and Rosenau (1986). Note that equation (1.6) is satisfied
trivially and is hence no restriction on the group generators. The relation (1.5) gives rise
to the differential system of equations for group generators which, as distinct from the
system produced by the classical Lie group method, is in general nonlinear. The set of
solutions for the generators potentially available with the help of this method is larger than
the set obtained by the classical method, making it possible to find further types of explicit
solutions by the same reduction techniques.

A generalization of the Bluman–Cole non-classical method was proposed by Olver
and Rosenau (1987). To find the similarity solutions of a given PDE, Olver and Rosenau
(1987) start from any groupG of point transformations and proceed to apply the usual
approach to construct group-invariant solutions. Since in generalG is not a symmetry
group of the original PDE, the reduction procedure results in an equation which involves,
besides invariants of the group and their derivatives, one of the independent variables (for
examplex) as a parametric variable. This equation can be reduced to an overdetermined
system of ODEs (these can be found, for instance, by expanding the equation in powers
of x). Generally, the system will not be compatible for a specific group and equation, and
therefore the validity of the method is restricted by the impossibility of determininga priori
which groups will result in compatible reduced systems.

The ‘direct method’ of Clarkson and Kruskal (1989) does not use group theory. The
basic idea of this method is to seek the solution of equation (1.1) in the form

u(x, t) = F(x, t, w(z(x, t))) (1.7)

which could be considered as the most general form for similarity solutions (see Bluman
and Cole (1974)). Substituting the ansatz (1.7) into (1.1) and requiring that the result be an
ODE for w(z) imposes conditions uponF , z and their derivatives, which yields the desired
reductions. Note that for most of the equations to which the method was applied, it turned
out to be sufficient to use a special form of (1.7), namely

u = α(x, t) + β(x, t)w(z(x, t)). (1.8)

An extended version of the direct method of Clarkson and Kruskal is introduced in
Hood (1995). This new method is similar to the original but begins with a generalization
of the form (1.8), namely

u = α(x, t) + β(x, t)w(z(x, t)) + γ (x, t)v(ζ(x, t)) (1.9)

and correspondingly uses a more general concept, which is to seek reductions to a system
of ordinary differential equations rather than the usual single equation; this leads to a wider
class of solutions.
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Relations existing between the non-classical method due to Bluman and Cole (1969)
and the direct method due to Clarkson and Kruskal (1989) were discussed in a series of
papers concerning applications of the direct method—see, for example, Levi and Winternitz
(1989), Nucci and Clarkson (1992), Pucci (1992), Clarkson (1992), Arrigoet al (1993) and
Olver (1994). For some equations (e.g. the Boussinesq equation; see Levi and Winternitz
(1989)) it was established that the solutions given by the Clarkson and Kruskal direct
reduction procedure are exactly the same as those obtained as invariant solutions under
the non-classical symmetry groups admitted by the equation. However, other equations
(Nucci and Clarkson 1992, Pucci 1992) appear to indicate that the non-classical method is
more general than the direct method. It was observed by Pucci (1992) that the similarity
solutions corresponding to non-classical groups should, in general, constitute a larger family
than that obtained by the Clarkson and Kruskal method, since the reduction (1.7) used in
the direct method is equivalent to finding similarity solutions corresponding only to those
non-classical groups for which the ratioξ/τ of generators is independent ofu andτ 6= 0.
Pucci’s results have been somewhat extended by Arrigoet al (1993). Olver (1994) has
shown that the direct method is equivalent to the non-classical method when the generators
for the independent variables are autonomous with respect to the dependent variables.

Another method for deriving special explicit solutions of PDEs was developed in Burde
(1990, 1994) and applied to the axisymmetric steady-state boundary-layer equations. This
method involves the usual direct substitution of a similarity form in a given PDE, but in
contrast to other methods it does away with the usual requirement of reducibility to an ODE.
Instead, the PDE is reduced to an overdetermined system of ODEs forw(z) that can be
solved in closed form (similar ideas have been used by Galaktionov (1990) to construct an
exact solution of the nonlinear heat equation with a source term and by Estevez (1992) to
obtain a particular solution of the Fitzhugh–Nagumo equation). Some arguments presented
in Burde (1994) suggest that the similarity reductions produced by this method can be
obtained neither by the group methods (classical or non-classical) nor by the direct method
of Clarkson and Kruskal (1989). A generalization of the method to the case of a PDE with
three independent variables is given in Burde (1995).

In this paper we discuss similarity reductions of the two-dimensional steady-state
boundary layer (BL) equations. The classical symmetry groups for these equations are
determined in Ovsiannikov (1982). We apply the non-classical method due to Bluman and
Cole (1969) to the steady-state BL equations reduced to a single equation for a stream
function

uxxx + utuxx − uxuxt − 2 = 0 (1.10)

wherex and t are respectively the transverse and longitudinal Cartesian coordinates and
2(t) is an arbitrary element. We show that all similarity reductions corresponding to non-
classical symmetries of the Bluman and Cole type (1969) (for whichτ 6= 0) can be found for
this equation. Further we develop an extension of the non-classical method which provides
a unifying group-theoretic framework for the Clarkson and Kruskal (1989) method and
the method developed in Burde (1990, 1994), and show that applied to equation (1.10) this
extension can produce new similarity reductions not found among classical and non-classical
similarity reductions.

The outline of the paper is as follows. In section 2 we describe the classical similarity
reductions of the BL equations and apply the non-classical method due to Bluman and Cole
(1969) to equation (1.10). In section 3 we develop the extension to the non-classical method
and apply it to equation (1.10) to derive some similarity solutions not obtainable with the
non-classical method. Finally, in section 4 we make some remarks on the results and
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suggest possible further work. Application of the direct method of Clarkson and Kruskal to
equation (1.10) is outlined in appendix A. Auxiliary results concerning some generalization
of our method are presented in appendixes B and C.

2. Classical and non-classical similarity reductions of the BL equations

2.1. Boundary layer equations

Consider a steady two-dimensional viscous flow of an incompressible fluid over a flat plate
with the latter taken asY = 0 in the Cartesian(X, Y ) coordinates. The corresponding
components of velocity are denoted respectively byU andV . For a high Reynolds number,
the flow is described by the BL equations (see Schlihting (1968))

UX + VY = 0 (2.1a)

UUX + V UY = U(e)U
(e)
X + UYY (2.1b)

whereU(e)(X) is a given external flow. Without loss of generality we set the fluid kinematic
viscosity equal to one, which amounts to choosing suitable units for length and time.
Physically significant solutions of the BL equations should satisfy the condition at infinity

U(X, Y ) = U(e)(X) as Y → ∞. (2.2)

The boundary conditions atY = 0 may have different forms corresponding to different
physical conditions at the body surface (besides the usual zero conditions forU and V ,
specific laws of suction or blowing could be prescribed, for example).

In what follows we will deal with the BL equations reduced to one equation for the
stream function9 defined byU = 9Y andV = −9X. We will also change the notation:
{9, Y, X} → {u, x, t} and U(e)U

(e)
X → −2(t) to make it similar to that used in group

theoretic considerations. Then the equation for the stream function takes the form (1.10)
which is used in all subsequent calculations.

2.2. Classical similarity reductions

Equation (1.10) admits the classical symmetry groups defined by the following generators
(see Ovsiannikov 1982):

ξ = C3x + φ(t) τ = (2C3 + C2)t + C1 η = (C3 + C2)u + C4 (2.3)

with C1, C2, C3 andC4 being arbitrary constants. The constantsC1, C2 andC3 are connected
with the equation for the arbitrary element2:

[C1 + (C2 + 2C3)t ]2t + (2C3 − C2)2 = 0. (2.4)

The constantC4 is insignificant: any constant could be included in the stream functionu

without loss of generality as it does not effect changes in the velocity components. The
notation of the constants in (2.3) and (2.4) coincides with that in Ovsiannikov (1982) but
to compare the generators one should go over from the stream function to the velocity
components used as dependent variables in Ovsiannikov (1982).

All classical similarity reductions can be obtained by solving the characteristic equations
to find the invariants of the group, which are then used as new variables. For our case, the
characteristic equations are

dx

ξ
= dt

τ
= du

η
(2.5)
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whereξ , τ andη are given in (2.3).
Let us first consider the particular case whenC3 6= 0, C3 6= −C2 and C3 6= −C2/2.

With suitable rescaling and renaming of the parametersC1, C2, C3 andφ(t), (2.5) takes the
form

dx

A(x + 8(t))
= dt

(A + 1)(t − t0)
= du

u
(2.6)

whereA = C3/(C3 + C2), t0 = −C1/(2C3 + C2) and8 = φ/C3. Unless otherwise stated,
we shall sett0 = 0. The invariantsz(x, t) and w(t, u) are determined as the integration
constants of the equations (2.6) as follows

z = t−nx + q(t) w = utn−1 (2.7)

wheren = A/(A+1) is an arbitrary constant andq(t) = −n
∫
(8(t)/tn+1) dt is an arbitrary

function. Treating one of the invariantsw as a function of the other invariantz, one obtains
the similarity reduction

u = t1−nw(z) z = t−nx + q(t) (2.8)

wheren is an arbitrary constant andq(t) is an arbitrary function. Equation (2.4) is easily
solved for2 to give

2 = 20t
1−4n (2.9)

where20 is a constant.
Similarity reductions obtained in other particular cases have the following forms

C3 = 0 : u = tw(z) z = x + q(t) 2 = 20t (2.10)

C3 = −C2 : u = w(z) z = x/t + q(t) 2 = 20t
−3 (2.11)

C3 = −C2/2 : u = eλtw(z) z = x eλt + q(t) 2 = 20 e4λt (2.12)

whereλ is a constant andq(t) is an arbitrary function. Note that the reductions (2.10) and
(2.11) are particular cases of the reduction (2.8).

2.3. Non-classical similarity reductions

Applying the non-classical method due to Bluman and Cole (1969) to equation (1.10) and
assumingτ 6= 0 (we setτ = 1 without loss of generality) we obtain the following equations
for the group generators:

ξu = 0 ηuu = 0 (2.13)

3ξxx − 3ηxu − ηt − ξηx − ηηu − ηξx = 0 (2.14)

ηtu − ξxt + ξηxu − ξξxx + η2
u − ξ2

x = 0 (2.15)

ξxxx − 3ηxxu + ηxt + ξηxx − ηηxu + ηξxx + 2ηxηu = 0 (2.16)

2t − 2(ηu − 3ξx) − ηxxx − ηηxx + η2
x = 0. (2.17)

We do not consider the caseτ = 0 restricting ourselves to non-classical symmetries of the
Bluman and Cole type (1969).

From (2.13) one deduces that

η = M(x, t) + N(x, t)u ξ = L(x, t). (2.18)
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Substituting (2.18) into (2.14)–(2.16) yields a system of equations for the functionsM(x, t),
N(x, t) and L(x, t) from which one can see by a direct check that this system has no
solutions withNx 6= 0. Then there are four cases to consider forτ 6= 0 and correspondingly
the following four families of non-classical group generators are defined:

Case 1: Nx = 0, Nt 6= 0, Mx 6= 0.

τ = 1 ξ = 1
3x(t − t0)

−1 + φ(t) (2.19a)

η = 2
3u(t − t0)

−1 + C1x(t − t0)
−4/3 − C1(t − t0)

−1
∫

(t − t0)
−1/3φ(t) dt

+C2(t − t0)
−1 (2.19b)

2 = 3
4C2

1(t − t0)
−5/3 + 20(t − t0)

−1/3. (2.19c)

Case 2: Nx = 0, Nt 6= 0, Mx = 0.

τ = 1 ξ = (1 − C1)x(t − t0)
−1 + φ(t) (2.20a)

η = (C1u + C2)(t − t0)
−1 2 = 20(t − t0)

4C1−3. (2.20b)

Case 3: N = constant6= 0.

τ = 1 ξ = −C1x + φ(t) η = C1u + C2 2 = 20 e4C1t . (2.21)

Case 4: N = 0.

τ = 1 ξ = x(t − t0)
−1 + φ(t) η = C2(t − t0)

−1 2 = 20(t − t0)
−3. (2.22)

In all the equations (2.19)–(2.22),C1, C2, t0 and20 are arbitrary constants andφ(t) is an
arbitrary function.

Solving the characteristic equations (2.5) we obtain the corresponding similarity
reductions (we rescale and rename arbitrary constants and functions and sett0 = 0):

Case 1.

u = cz + t2/3w(z) z = xt−1/3 + q(t) 2 = 20t
−1/3 + 1

3c2t−5/3 (2.23a)

wherec is an arbitrary constant,q(t) is an arbitrary function andw(z) satisfies

w′′′ + 2
3ww′′ − 1

3(w′)2 − 20 = 0. (2.23b)

Hereafter primes denote derivatives with respect to an argument in any function of one
variable.

Case 2i: C1 6= 0.

u = t1−nw(z) z = xt−n + q(t) 2 = 20t
1−4n (2.24a)

wheren = 1 − C1 is an arbitrary constant,q(t) is an arbitrary function andw(z) satisfies

w′′′ + (1 − n)ww′′ + (2n − 1)(w′)2 − 20 = 0. (2.24b)

Case 2ii: C1 = 0.

u = k ln t + w(z) z = xt−1 + q(t) 2 = 20t
−3 (2.25a)

wherek is an arbitrary constant,q(t) is an arbitrary function andw(z) satisfies

w′′′ + kw′′ + (w′)2 − 20 = 0. (2.25b)
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Case 3.

u = eλtw(z) z = x eλt + q(t) 2 = 20 e4λt (2.26a)

whereλ = C1 is an arbitrary constant andq(t) is an arbitrary function andw(z) satisfies

w′′′ + λww′′ − 2λ(w′)2 − 20 = 0. (2.26b)

Case 4. It is easily seen that the set of infinitesimals (2.22) is a particular case of the
set given by (2.20) forC1 = 0. Hence, the similarity reduction in case 4 is given by (2.25).

It should be noted that in all the formulae (2.23)–(2.26) insignificant additive constants
have been omitted in the expression foru.

Among the similarity reductions found above by applying the non-classical method due
to Bluman and Cole, only the reduction (2.23) is a new one. Reductions (2.24) and (2.26)
coincide with the classical similarity reductions (2.8) and (2.12). Reduction (2.25) has been
identified in Burde (1990) using a solution form which is formally a subset of ansatz (1.8).

3. Some other reductions—an extension to the non-classical method

To formulate the extension we will make some changes in the procedure of the non-classical
method.

Both the original procedure of the non-classical method due to Bluman and Cole (1969)
and our procedure start from the infinitesimal equation (1.3) obtained by the prolongation
of the group action on (1.1). In the procedure of the non-classical method the invariant
surface condition (1.4) and its differential consequences up to ordern are used to eliminate
derivativesut , uxt and so on from (1.3) (some difficulties encountered in this process and
the ways to avoid them are discussed by Clarkson and Mansfield (1994)). As a result this
infinitesimal equation is represented as a polynomial in the derivativesux , uxx and so on.
Then setting the coefficients of the monomials to zero yields the determining equations for
the group generators. Having the generators defined, the invariant surface condition (1.4)
allows determination of the similarity variable and the form of similarity reduction.

In our procedure a specific form of similarity reduction is assumed from the beginning
and the conditions for the independentz and dependentw similarity variables, being group
invariant, are used as auxiliary equations instead of the invariant surface condition (1.4).
These auxiliary equations enable one to express the group generators as functions ofx, t and
u and eliminate them from (1.3); next the assumed similarity form is used for eliminating
u from the equation obtained. The transformations are aimed at representing the resulting
infinitesimal equation as a polynomial inw(z) and its derivatives (instead of a polynomial
in the derivatives ofu with respect tox as in the original procedure of the non-classical
method). Satisfying this equation determines parameters of the assumed similarity form.

Let us define this procedure more concretely assuming the similarity form (1.8). In this
case the similarity variables are represented as functions ofx, t andu by the following

z = z(x, t) w = ζ(x, t, u) = u

β(x, t)
− α(x, t)

β(x, t)
. (3.1)

The conditions for the invariance ofz(x, t) andζ(x, t, u) under group transformations are

I1 = ξzx + τzt = 0 (3.2a)

I2 = ξζx + τζt + ηζu = 0. (3.2b)
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The group generatorsξ(x, t) and η(x, t, u) (we setτ = 1) are expressed from (3.2) as
follows

ξ = − zt

zx

(3.3)

η = u

(
βt − (zt/zx)βx

β

)
+ αt − (zt/zx)αx − α

β
(βt − (zt/zx)βx) (3.4)

which enables the derivatives of the generators with respect tox, t andu to be calculated
and, in this way, the generators are eliminated from equation (1.3).

After eliminatingu with the use of (1.8) and its differential consequences:

ux = αx + βxw + βzxw
′ ut = αt + βtw + βztw

′ . . . (3.5)

up to ordern, the resulting infinitesimal equation is rearranged by collecting coefficients of
like derivatives and powers ofw(z).

The described procedure is equivalent to the non-classical method in a sense, since both
(1.4), used as an auxiliary equation in the original procedure of the method, and (3.2a),
(3.2b) and (1.8), used as auxiliary equations in our procedure, prescribe the group invariance
of the desired solutions (it is easily checked that (1.4) is satisfied by (3.3), (3.4) and (1.8)).
At the same time the form in which the resulting infinitesimal equation is represented permits
an extension as shown below.

We will show this resulting equation for the case when the original PDE is (1.10). Then
the infinitesimal equation (1.3), with which the procedure starts, has the form

P = uxxut (ξx + ηu) + uxtux(−ξx − ηu) + uxx(−3ξxx + 3ηxu + ηt ) + uxt (−ηx)

+u2
x(ξxt − ηtu) + uxut (−ξxx + ηxu) + ux(3ηxxu − ξxxx − ηxt ) + ut (ηxx)

+[ηxxx − 2′ − 2(3ξx − ηu)] = 0. (3.6)

To avoid unnecessary complications, we have already taken into account thatτ = 1, ξu = 0
andηuu = 0, as follows from (3.3) and (3.4). The resulting infinitesimal equation takes the
following form:

P = βz3
x [B(1)ww′′ + B(2)(w′)2 + B(3)ww′ + B(4)w2 + B(5)w′′ + B(6)w′ + B(7)w + B(8)]

= 0 (3.7)

where the coefficientsB(i)(x, t) are expressed through the functionsα(x, t), β(x, t) and
z(x, t).

The combinations appearing in these expressions (similar combinations can be seen in
(3.4)) suggest the following change of variables:

{x, t} → {z(x, t), ϕ} ϕ = t (3.8a)

so that

fx = fzzx ft = fϕ + fzzt ft − (zt/zx)fx = fϕ (3.8b)

for any functionf (x, t) (we retain the same notation for the functions of new variables).
Then the expressions for the coefficientsB(i)(z, ϕ) take the following forms:

B(1) = β

γ
(bϕϕ + b2

ϕ − bϕgϕ) B(2) = β

γ
(−bϕϕ − b2

ϕ + g2
ϕ − gϕϕ) . . . (3.9a)

where

γ (z, ϕ) = zx g(z, ϕ) = ln γ b(z, ϕ) = ln β (3.9b)
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and the following identities have been used:( zt

zx

)
x
= gϕ βϕ = βbϕ. (3.9c)

It turns out that there exists a close connection between the resulting infinitesimal
equation (3.7) of our procedure and the initial relation of the direct method. The latter
relation is obtained by substituting the assumed similarity form (1.8) and its differential
consequences (3.5) into the PDE (1.10). After collecting coefficients of like derivatives and
powers ofw(z), normalizing all the coefficients by dividing them by the coefficient of the
monomialw′′′ and making the change of variables (3.8) in the normalized coefficients (for
more details see appendix A), the initial relation of the direct method takes the form (A3)
with the normalized coefficientsA(i)(z, ϕ) given by (A4).

The connection between (3.7) and (A3) displays itself in relations existing between
the coefficientsB(i)(z, ϕ) of the monomials in (3.7) and the corresponding normalized
coefficientsA(i)(z, ϕ) in (A3), namely

B(i) = A(i)
ϕ i = 1, 2, . . . , 8. (3.10)

One may directly check these relations fori = 1 andi = 2 differentiating (A4a) with respect
to ϕ with allowance for (3.9c) and comparing the results with (3.9a). The representation
(3.10) of the coefficients in equation (3.7), which is the condition for the group invariance
of the PDE (1.10) supplemented by the auxiliary equations prescribing group invariance of
the desired solutions, on the one hand establishes a direct connection of the non-classical
method with the direct method and on the other hand leads to an extension of the non-
classical method.

First, if one satisfies equation (3.7) requiring that all the coefficientsB(i) of monomials
in (3.7) vanish, this with allowance for (3.10) leads to the direct method. Indeed, the
requirementA(i)

ϕ = 0 is equivalent to the basic requirement of the direct method of Clarkson
and Kruskal (1989) that the ratios of the coefficients of different monomials in the initial
relation of the direct method be functions ofz exclusively.

Further, one may satisfy (3.7) in another way, namely to require that it is reduced to
an ODE for the functionw(z). This implies that the ratios of the coefficientsB(i)(z, ϕ) of
different monomials in (3.7) are functions ofz which yields the following set of equations
(we assume for definiteness thatB(1) 6= 0):

A(i)
ϕ = Qi(z)A

(1)
ϕ i = 2, 3, . . . , 8 (3.11)

ww′′ + Q2(w
′)2 + Q3ww′ + Q4w

2 + Q5w
′′ + Q6w

′ + Q7w + Q8 = 0. (3.12)

Equations (3.11) can be easily integrated to give

A(i)(z, ϕ) = Qi(z)A
(1)(z, ϕ) + Ki(z) i = 2, 3, . . . , 8 (3.13)

where Ki(z) are functions of integration. The relations (3.13) coupled with the
expressions (A4) forA(i) yield differential equations for the functionsα(z, ϕ), β(z, ϕ)

andγ (z, ϕ) = zx which specify the form of the similarity reduction. To findw(z) one has
to substitute in the usual way this form into the original PDE (1.10) or to substitute the
relations (3.13) into equation (A3) derived from (1.10) and (1.8). It is easily seen that the
substitution of (3.13) into (A3) yields an overdetermined system of two ODEs forw(z) one
of which is (3.12) and the other is

w′′′ + K2(w
′)2 + K3ww′ + K4w

2 + K5w
′′ + K6w

′ + K7w + K8 = 0. (3.14)
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Thus, the desired similarity solution is defined by (1.8) withα(x, t), β(x, t), z(x, t) and
w(z) determined from the system (3.13), (3.12) and (3.14) whereQi(z) and Ki(z) are
to be partially or completely specified in the process of solving the system. Evidently
this method should, in general, yield reductions differing from those obtained by the non-
classical method.

The relations (3.13) are similar to those used in the method developed in Burde (1990,
1994) when two of the coefficients of monomials in the relation (A3) serve as the normalizing
coefficients to reduce (A3) to an overdetermined system of two ODEs forw(z) (here these
normalizing coefficients are the coefficients of the monomialsw′′′ andww′′). The procedure
described above not only provides a group-theoretic explanation of the method but also gives
an algorithm for constructing the system of ODEs forw(z). The technique for applying the
method is outlined below.

3.1. Technique

To apply the method, one assumes a specific form for a similarity reduction (the form
(1.8) is not obligatory—for example, below we show an application of the method using
a form which is a special case of (1.8)). The assumed form is substituted into the PDE
and the relation obtained is rearranged by collecting like derivatives and powers ofw(z).
The coefficients of the monomials are normalized by dividing by one of the coefficients. If
the highest (nth-order) derivative ofu with respect tox enters the original PDE linearly,
which is frequently the case, the coefficient of thenth-order derivative ofw(z) can always
be taken as the normalizing one (for ease of exposition we will assume this below). Let us
also assume that the remaining monomials and their coefficientsA(i) are indexed from 1 to
M. The relation obtained in this way is a counterpart of (A3); it is also the initial relation
of the direct method and all the procedure up to this point coincides with that of the direct
method.

Next one makes the change of variables (3.8) in the expressions for the normalized
coefficientsA(i), after which the system of equations defining parameters of the assumed
similarity form can be constructed. This system consists of two ODEs forw(z) and the
system of PDEs for other functions ofz andϕ entering the similarity form.

One of the ODEs forw(z) (a counterpart of equation (3.12)) does not include thenth-
order derivative ofw(z); the monomials, for whichA(i)

ϕ = 0, are also not included. The
coefficientsQi(z) of the monomials in this ODE are functions to be determined and one
of the coefficients, let us say, with indexN (in (3.12)N = 1), is taken to be equal to one,
which means that the corresponding quantityB(N) = A(N)

ϕ has been used for normalization
of the coefficients in this ODE.

The second ODE forw(z) (a counterpart of equation (3.14)) includes all the monomials
from the initial relation excepting the monomial with indexN . The coefficient of thenth-
order derivative ofw(z) is equal to one; the coefficients of those monomials, for which
A(i)

ϕ = 0, are equal toA(i) and the coefficientsKi(z) of the remaining monomials are to be
determined.

The PDEs (counterparts of equations (3.13)), which determine functions ofz and ϕ

entering the similarity form, are constructed as follows

A(i)(z, ϕ) = Qi(z)A
(N)(z, ϕ) + Ki(z) (3.15)

wherei runs from 1 toM; i 6= N and the values ofi for which A(i)
ϕ = 0 are also missing.

Remark (i). Some freedoms existing in the determination of the functionsQi(z) andKi(z)

can be exploited to construct different explicit solutions of the system described above.
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Remark (ii). A need to change the second normalizing coefficient (with indexN ) may
arise while considering some special cases of the assumed similarity form, if for these cases
this coefficient vanishes.

3.2. Example

To show the application of the method we will take a special case (A5) of the similarity
form (1.8). The form (A5) corresponds to the same type ofx and t dependence as
most of the reductions obtained by the non-classical method including the new similarity
reduction (2.23); applying the direct method due to Clarkson and Kruskal (1989) also leads
to this form excepting the caseβ = constant. We will show that by applying our method
to the same simple form one can obtain additional similarity reductions which cannot be
obtained by either the non-classical or the direct methods.

The coefficientsA(i) specified for the form (A5) are given by (A6) (the rest of the
coefficients vanish). TakingN = 1 in (3.15) and substituting (A6) into (3.15), we obtain
the following equations:

−β ′

γ
− γ ′β

γ 2
= K2 + Q2

β ′

γ
(3.16)

− c

γ

(
β ′

β
+ 2

γ ′

γ

)
= K6 + Q6

β ′

γ
(3.17)

−c2γ ′

βγ 2
− 2

βγ 3
= K8 + Q8

β ′

γ
. (3.18)

Here Ki and Qi are constants since the functionsβ, γ and 2 depend only ont so that
equations (3.16)–(3.18) have to be ordinary differential equations.

The system (3.16) and (3.17) of two equations for two variablesγ (t) andβ(t) can be
easily solved by treatingβ as a new independent variable to give

γ = γ0β
−1/2(β + a)N (K2 6= 0, K6 6= 0) (3.19a)

γ = γ0β
−Q2−1 (K2 = 0) (3.19b)

γ = γ0β
−1/2 exp(bβ) (K6 = 0) (3.19c)

where

a = −2cK2

K6
N = −Q2 − 1

2
+ K2Q6

K6
b = −Q6

2c
(3.20)

andγ0 is an arbitrary constant. The corresponding relations determiningβ(t) are

β ′ = γ0K2β
−1/2(β + a)N+1

a[β(Q6/2c) − (Q2 + 1
2)]

(K2 6= 0, K6 6= 0) (3.21a)

β ′ = γ0K6β
−Q2

c(2Q2 + 1) − Q6β
(K2 = 0) (3.21b)

β ′ = −γ0K2β
−1/2 exp(bβ)

Q2 + 1
2 + bβ

(K6 = 0). (3.21c)

After determination of the functionsγ (t) andβ(t), the function2(t) is explicitly defined
by (3.18).
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The overdetermined system of ODEs for the functionw(z) (it could also be obtained
by a direct substitution of the relations (3.19) and (3.21) into equations (A6) and (A3)) has
the form

w′′′ + K2(w
′)2 + K6w

′ + K8 = 0 (3.22)

ww′′ + Q2(w
′)2 + Q6w

′ + Q8 = 0. (3.23)

We seek a solution of this system beginning with the second equation. By the reduction
w′ = π(w) equations (3.22) and (3.23) are reduced to the following

(ππ ′)′π + K2π
2 + K6π + K8 = 0 (3.24)

wππ ′ + Q2π
2 + Q6π + Q8 = 0. (3.25)

The second equation is easily integrated to give

(π + λ1)
λ1 = MwS(π + λ2)

λ2 (Q2 6= 0, Q6 6= 0, Q8 6= 0) (3.26)

π − R2 ln |π + R2| = ln(Mw−Q6) (Q2 = 0) (3.27)

π = (−R3 + Mw−2Q2)1/2 (Q6 = 0) (3.28)

π = −R1 + Mw−Q2 (Q8 = 0) (3.29)

where

S = (Q2
6 − 4Q2Q8)

1/2 λ1 = Q6 − S

2Q2
λ2 = Q6 + S

2Q2

R1 = Q6

Q2
R2 = Q8

Q6
R3 = Q8

Q2
(3.30)

andM is an arbitrary constant. Substituting these formulae into (3.24) one can find all the
cases for which the overdetermined system of equations (3.22) and (3.23) is compatible.
After discarding variants which lead to solutions unbounded at infinity, we have three cases
to consider.

Case 1. K2 = 0, K8 = 0, Q2 = −1, Q8 = 0:

π = Q6 + Mw M2 = −K6 (3.31)

whereK6 andQ6 are arbitrary constants.
Case 2. K8 = 0, Q2 = −2, Q8 = 0:

π = Q6/2 + Mw2 M = −K2/6, K6 = −Q6K2/3 (3.32)

whereK2 andQ6 are arbitrary constants.
Case 3. K6 = 0, K8 = 0, Q2 = −2, Q6 = 0, Q8 = 0:

π = −(K2/6)w2 (3.33)

whereK2 is an arbitrary constant.
The corresponding expressions forw(z) are found by integrating the equationw′ = π(z).
Specifying the formulae (3.19)–(3.21) according to the values of constants from (3.31)–

(3.33) and using in (A5) the resulting expressions forγ (t), β(t) and w(z), we obtain the
following explicit similarity solutions:

Case 1.

u = cz + β

(
R

λ
+ M e−λz

)
z = x + q(t) (3.34a)

Rβ + c ln β = λ2t 2 = 0. (3.34b)
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Case 2.

u = cz + β(6 tanhz) z = x
β

t
+ q(t) (3.35a)

β = − c

4
±

(
c2

16
+ Mt2/3

)1/2

2 = c2t−3(β2 − tββ ′). (3.35b)

Case 3.

u = cz + t2/3

(
6

z

)
z = xt−1/3 + q(t) 2 = c2

3
t−5/3. (3.36)

In equations (3.34)–(3.36),c, M, R and λ are arbitrary constants andq(t) is an arbitrary
function.

All these solutions satisfy the condition (2.2) at infinity which takes in the variables
(x, t, u) the form

ux(x, t) = U(e)(t) as x → ∞
whereU(e)(t) is defined by the relation

U(e)U
(e)
t = −2(t).

The solution (3.36) is representative of the non-classical similarity reduction (2.23) with
w(z) being a particular solution of equation (2.23b) for 20 = 0. Two other solutions given
by (3.34) and (3.35) correspond to new similarity reductions which do not figure among the
reductions obtained by the non-classical method.

4. Concluding remarks

In this paper we have dealt with the problem of finding similarity reductions of the two-
dimensional steady-state BL equations reduced to a single PDE (1.10) for the stream function
of the flow. We have found several new similarity reductions and explicit solutions of this
equation. Some of them are obtained by applying the non-classical group method due to
Bluman and Cole (1969) and others are determined using an extension to the non-classical
method introduced in this paper.

The extension is possible due to changes in the procedure of the method which are
aimed at another representation of the resulting infinitesimal equation which expresses
the invariance requirement for the initial PDE supplemented by the auxiliary equation(s)
prescribing group invariance of the desired solutions. As distinct from the original procedure
of the non-classical method, in which the resulting infinitesimal equation has the form of a
polynomial in the derivatives ofu with respect tox, in the changed procedure, this equation
is represented as a polynomial inw(z) and its derivatives. Two different ways of satisfying
the infinitesimal equation lead to two different methods: the original non-classical method
(or direct method) and the extension.

From another point of view such an approach provides a unifying group-theoretic
framework for the direct method due to Clarkson and Kruskal (1989) and the method
developed in Burde (1990, 1994). The group-theoretic explanation of the latter method, as
an extension to the non-classical method, also defines an algorithm of its application.

We have given an example of applying the method to equation (1.10) to derive several
explicit similarity solutions of this equation. Two of them, given by (3.34) and (3.35),
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correspond to the similarity reductions, which do not appear among either classical or non-
classical reductions of the BL equations, and one, given by (3.36), is a representative of the
non-classical similarity reduction withw(z) being a particular solution of the corresponding
ODE.

Note that this last solution might suggest that all the solutions obtained by our method do
not represent independent similarity reductions but are only exact solutions corresponding
to particular cases of more general similarity reductions. Therefore it is worth showing
how the solution (3.36) can be a solution of the system of equations of our method and
simultaneously satisfy the equations for the corresponding non-classical similarity reduction.

The solution (3.36) arises in our method if one specifies the values of constants according
to (3.33) (the form of the solution also shows that one can setK2 = 1 without loss
of generality). Thenγ (t) and β(t) determined by (3.19c) and (3.21c) take the forms
corresponding to the non-classical similarity reduction (2.23a) which permits the reduction
of the PDE (1.10) to one ODE (2.23b) for w(z). However, in our method the functionw(z)

is the solution of the overdetermined system of the ODEs (3.22) and (3.23) which, being
specified according to the values of constants in (3.33) withK2 = 1, take the following
forms:

w′′′ + (w′)2 = 0 ww′′′ − 2(w′)2 = 0. (4.1)

It is easily seen that multiplying the second equation of (4.1) by2
3 and adding the result

to the first equation of (4.1) we obtain equation (2.23b) with 20 = 0. Thus, in this case
dividing the relation (A3) in two, as in our method, is simultaneously dividing the ODE
(2.23b) into two ODEs, which shows that the solution (3.36) is a peculiar case.

As regards two other solutions (3.34) and (3.35) obtained by our method, it can be
checked that the corresponding expressions forγ (t) and β(t) do not allow (1.10) to be
reduced to a single ODE but it is reduced to an overdetermined system which cannot be
connected with a classical or non-classical reduction.

All the above considerations show that our method can produce similarity reductions
which are not obtainable by either classical or non-classical group methods.

The solutions found with the help of our method—having rather simple forms—are
nevertheless physically significant and can represent solutions of specific boundary-layer
problems which are of interest from theoretical and engineering points of view—one can find
examples relating to axisymmetric and unsteady flows in Burde (1994, 1995a). Examples
of the exact solutions of the Navier–Stokes equations describing non-steady stagnation-
point flows, which are important in many fields of aerodynamics and hydrodynamics and
have numerous applications, are presented in Burde (1995b). The solutions (3.34)–(3.36)
after specifying the free parameters contained in a solution (these are arbitrary constants and
arbitrary functions of the longitudinal coordinate) can, for example, describe boundary-layer
flows along solid permeable surfaces with a continuous distribution of suction (both normal
and oblique). Transpiration at solid boundaries has numerous applications to boundary-
layer control of flow over wings and turbine blades, the flow past permeable moving
belt-surfaces with mass transfer found in industrial manufacturing devices and sundry
chemical engineering processes. Asymptotic solutions to these problems obtained through
similarity reductions of the BL equations help provide a fundamental understanding of these
complicated flows.

The solutions found by our method can also be used as models for numerical experiments
differing from known exact solutions of the BL equations in that they do not represent flows
with self-similar velocity profiles. Therefore a specific problem corresponding to such a
solution is not reduced to an ODE and the solution can serve as a test for essentially two-
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dimensional (or three-dimensional in the case of unsteady flows) numerical experiments.
Finally in this section, we remark that the similarity solutions of the steady-state two-

dimensional BL equations, available with the help of our method, are not confined to the
set found in this paper in which only an example of application of the method for a special
case (A5) of the initial similarity form is presented. For instance, even a slight extension
of the initial similarity form, namely

u = α(x, t) + β(t)w(z) z = xγ (t) + q(t)

yields many more possibilities. How to get all the solutions of equation (1.10) obtainable
by this method will be carefully discussed elsewhere.
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Appendix A. Application of the direct method to equation (1.10)

Even though it is known that the direct method due to Clarkson and Kruskal (1989) is
equivalent to the non-classical method for the caseτ 6= 0 (see Olver 1994), we shall outline
the application of the direct method to equation (1.10) since the corresponding formulae
play an important role in the formulation of an extension to the non-classical method in
section 3.

First, substituting the similarity form (1.7) into (1.10) yields

(Fwz3
x)w

′′′ + (3Fwwz3
x)w

′w′′ + · · · = 0. (A1)

The rest of the terms have been omitted since applying the usual procedure of the direct
method to these two is sufficient to reduce the similarity form to (1.8).

Substituting the form (1.8) into (1.10) and collecting coefficients of like derivatives and
powers ofw(z) yields the relation

(βz3
x)w

′′′ + (ββtz
2
x − ββxzxzt )ww′′ + (ββxzxzt + β2ztzxx − ββtz

2
x − β2zxzxt )(w

′)2

+(βtβxzx + ββtzxx + ββxxzt − β2
x zt − ββxzxt − ββxtzx)ww′

+(βtβxx − βxβxt)w2 + (3βxz
2
x + 3βzxzxx + αtβz2

x − αxβzxzt )w
′′

+(βzxxx + 3βxzxx + 3βxxzx + αxxβzt + 2αtβxzx + αtβzxx

−αxβxzt − αxβtzx − αxβzxt − αxtβzx)w
′

+(βxxx + αtβxx + αxxβt − αxβxt − αxtβx)w

+(αxxx + αtαxx − αxαxt − 2) = 0. (A2)

In order that this equation be an ordinary differential equation forw(z), the ratios of
coefficients of different derivatives and powers ofw(z) have to be functions ofz only. This
gives a set of equations forα(x, t), β(x, t) andz(x, t) whose solutions yield the similarity
reductions of the original PDE (1.10). These equations are easier to examine if one makes
the change of variables (3.8) in the coefficients. Then equation (A2) after dividing all the
coefficients by the coefficientβz3

x of the monomialw′′′ (we assume thatzx 6= 0 which
corresponds to the non-classical method forτ 6= 0) may be rewritten in the form

βz3
x [w′′′ + A(1)ww′′ + A(2)(w′)2 + A(3)ww′ + A(4)w2 + A(5)w′′ + A(6)w′ + A(7)w + A(8)]

= 0 (A3)
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where the normalized coefficientsA(i)(z, ϕ) (i = 1, . . . , 8) are expressed through the
functionsα(z, ϕ), β(z, ϕ) andγ (z, ϕ) = zx by the relations

A(1) =
(

β

γ

)
bϕ A(2) = −

(
β

γ

)
(bϕ + gϕ) (A4a)

A(3) = −
(

β

γ

)
(bzϕ + 2bzgϕ − bϕgz)

A(4) = −
(

β

γ

)
(bzϕbz − bzzbϕ + gϕb2

z − bϕbzgz)

(A4b)

A(5) = 3(bz + gz) + 1

γ
αϕ

A(6) = 3bzz + 6bzgz + 3b2
z + gzz + 2g2

z + 1

γ
(−αzϕ + 2αϕbz + αϕgz − αzbϕ − 2αzgϕ)

(A4c)

A(7) = bzzz + 3bzzbz + b3
z + 3bzzgz + bzgzz + 3b2

zgz + 2g2
z bz

+ 1

γ
[−αzϕbz + αzzbϕ + αϕ(bzz + bzgz + b2

z )

+αz(−bzϕ − bϕbz + bϕgz − 2bzgϕ)] (A4d)

A(8) = 1

β

[
αzzz + 3αzzgz + αzgzz + 2αzg

2
z + 1

γ
(αϕαzz + αϕαzgz − α2

z gϕ − αzαzϕ) − 2

γ 3

]
(A4e)

with b andg defined in (3.9b).
Applying the procedure of the direct method due to Clarkson and Kruskal (1989) to

(A3) in the case ofβϕ 6= 0 yields the similarity reduction of the following form

u = cz + β(t)w(z) z = xγ (t) + q(t) (A5)

wherec is a constant. Then the non-vanishing normalized coefficients in (A3) are

A(1) = β ′

γ
A(2) = −β ′

γ
− γ ′β

γ 2

A(6) = − c

γ

(
β ′

β
+ 2

γ ′

γ

)
A(8) = −c2γ ′

βγ 2
− 2

βγ 3
(A6)

whereβ, γ and2 are functions oft only. The constraints yielded by the requirement that
(A3) with the coefficients in the forms (A6) is reduced to an ODE lead to the similarity
reductions (2.23), (2.24) and (2.26).

The caseβϕ = 0 yields the reduction (2.25).

Appendix B. Generalization of the method

The extension of the non-classical method, described in section 3, can be somewhat
generalized if one does not assumeτ = 1 while deriving equation (3.7). Whyτ does not
remain arbitrary in the resulting infinitesimal equation of our procedure (as distinct from
the original procedure of the non-classical method) is explained in detail in appendix C (to
simplify the exposition there we take the Burgers equation as an initial PDE). Here we will
only remark that even though the relations (3.2) (or (1.4) as in the original procedure of
the non-classical method) determine the generatorsξ andη only up to an overall functional
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multiple, the infinitesimal equation (1.3), in which these relations are used, does not possess
such a property and therefore the resulting infinitesimal equation may also not have it. In
other words, in spite of the fact thatτ can be scaled out from (3.2) (or (1.4)) by redefining
ξ and η as ξ̃ = ξ/τ and η̃ = η/τ , the resulting infinitesimal equation may, along with
ξ̃ and η̃, include terms withτ and its derivatives in such a way that one cannot takeτ

arbitrary (in particular, constant) without loss of generality. The difference between the
resulting equation of the original non-classical method and ours is that such terms vanish
in the original procedure and remain in ours.

Applying our procedure to the PDE (1.10) without assumingτ 6= constant (but it is
assumedτu = 0, for simplicity) yields the following resulting infinitesimal equation

P = βz3
x [B(0)w′′′ + B(1)ww′′ + B(2)(w′)2 + B(3)ww′ + B(4)w2 + B(5)w′′ + B(6)w′

+B(7)w + B(8)] = 0 (B1)

where the coefficientsB(i) can be represented as follows

B(i) = τA(i)
ϕ − 3τx(zt/zx)A

(i) i = 0, 1, . . . , 8 (B2)

with A(0)=1. Thus, the resulting infinitesimal equation includes the additional terms having
τx as a multiplier.

The generalization, like the method itself, stems from the idea that the resulting
infinitesimal equation (B1) may be satisfied by reducing it to an ODE forw(z) (the
requirement that all the coefficientsB(i) vanish leads, as before, to the direct method).
This yields the following set of equations

τA(m)
ϕ − 3τx(zt/zx)A

(m) = km(z)[τ(A(0))ϕ − 3τx(zt/zx)A
(0)] m = 1, 2, . . . , 8 (B3)

where km(z) are for the present arbitrary functions. Eliminatingτ from the set of
equations (B3) results in the system

(A(1) − k1A
(0))ϕ

A(1) − k1A(0)
= (A(2) − k2A

(0))ϕ

A(2) − k2A(0)
= · · · = (A(8) − k8A

(0))ϕ

A(8) − k8A(0)
(B4)

which can be easily integrated to give

A(m) − kmA(0) = λml(z)(A
(l) − klA

(0)) m, l = 1, 2, . . . , 8 (B5)

whereλml(z) are functions of integration.
Thus, the result is represented by the set of equations (B5), which leads to different

variants of the method. If, for example, one selects from (B5) all the equations corresponding
to some fixedl = N (it is assumed thatA(N) 6= 0), the following system results

A(m) = Km(z)A(0) + Qm(z)A(N) m = 1, 2, . . . , 8 (m 6= N) (B6)

where Km = km − λmNkN , Qm = λmN and A(0) = 1. This corresponds to the method
described above.

If one rearranges (B5) by composing the equations corresponding to two different values
of the second subscriptl = N and l = L (A(N) 6= 0 andA(L) 6= 0), this yields a system of
the form

A(m) = Km(z)A(0) + Qm(z)A(N) + Rm(z)A(L) m = 1, 2, . . . , 8 (m 6= N, L) (B7)

whereKm = km − (λmNkN + λmLkL)/2, Qm = λmN/2 andRm = λmL/2. The system (B7)
represents a generalization of the previous method when three of the coefficientsA(i) (namely
A(0) = 1, A(N) andA(L)) are used as normalizing coefficients. Other variants of the method
can be derived from (B5) in a similar way.
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Appendix C. Procedure in the case ofτ 6= constant—an example of the Burgers
equation

Here we will show how the terms includingτ and its derivatives appear in the resulting
infinitesimal equation of our procedure. We take the well known Burgers equation

1 = ut + uux + uxx = 0 (C1)

as the initial PDE, in order not to deal with more complicated formulae for equation (1.10).
Then the infinitesimal equation (1.3) has the following form:

P = uxtux(−2τu) + uxt (−2τx) + u3
x(−ξuu) + u2

xut (−τuu) + u2
x(ηuu − 2ξxu + 2uξu)

+uxut (2ξu − 2τxu) + ux(2ηxu − ξxx − ξt + uξx + η)

+ut (2ξx − τxx − τt − uτx) + (ηxx + ηt + uηx) = 0. (C2)

Introducing new variables

ξ̃ = ξ/τ η̃ = η/τ (C3)

one may rearrange equation (C2) as follows

P = τ {u3
x(−ξ̃uu) + u2

x(η̃uu − 2ξ̃xu + 2uξ̃u − 2ξ̃ ξ̃u)

+ux(2η̃xu + η̃ + 2η̃ξ̃u − ξ̃xx − ξ̃t + uξ̃x − 2ξ̃ ξ̃x)

+(η̃xx + η̃t + uη̃x + 2η̃ξ̃x)}
−S1{τxx + τuuu

2
x + 2τxuux + τt − 2τuξ̃ux + τx(u − 2ξ̃ ) − 2τ(ξ̃uux + ξ̃x)}

−S2{2τx + 2τuux} = 0 (C4)

where

S1 = ut + ξ̃ux − η̃ (C5)

S2 = uxt + u2
x(ξ̃u) − ux(η̃u − ξ̃x + uξ̃ − ξ̃2) − (η̃x + ξ̃ η̃). (C6)

HereS1 = 1(1)/τ , where1(1) is the left-hand side of the invariant surface condition (1.4),
andS2 can be represented as follows:

S2 = (S1)x + ξ̃ (S1 − 1). (C7)

One can see that the terms in (C4) havingS1 andS2 as multipliers do not permit takingτ
arbitrary without loss of generality. The procedure of the non-classical method makes use
of the equations

S1 = 0 S2 = 0 (C8)

which removes those terms; as a result (C4) yields the determining equations of the non-
classical method. Our procedure makes use of equations (3.2), (1.8) and (3.5), which satisfy
the first equation of (C8) and its differential consequence(S1)x = 0, but it is not sufficient
for satisfying the second equation of (C8). Therefore in the resulting infinitesimal equation
obtained from (C4) with use of (3.2), (1.8) and (3.5):

βz2
x [B(0)w′′ + B(1)ww′ + B(2)w2 + B(3)w′ + B(4)w + B(5)] = 0 (C9)

the coefficientsB(i) include additional terms proportional toτx (it is assumedτu = 0):

B(i) = τA(i)
ϕ − 2τx(zt/zx)A

(i) i = 0, 1, . . . , 5. (C10)

HereA(i) are the coefficients in the initial relation of the direct method, which is obtained
by substituting the similarity form (1.8) into (C1) as follows

βz2
x [A(0)w′′ + A(1)ww′ + A(2)w2 + A(3)w′ + A(4)w + A(5)] = 0 (C11)
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whereA(0) = 1.
The additional terms in (C10) appear since the procedure does not make use of

equation (C11)—it is seen that substituting (C10) into (C9) and collecting the terms with
τx will result in the form placed in the square brackets in (C11)—this is equivalent to
retaining the term−ξ̃1 in (C7) or the corresponding term 2τx ξ̃1 in (C4). Although it
looks somewhat artificial, the fact that the resulting infinitesimal equation includes those
terms does not violate its validity whereas it permits a generalization of the method.
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